Обозначение общей площади

Формулы площади геометрических фигур

Обозначение общей площади

Площадь геометрической фигуры – численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам

    S = √p(p – a)(p – b)(p – c)

  3. Формула площади треугольника по двум сторонам и углу между ними
    Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.
  4. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности. где S – площадь треугольника,
    a, b, c – длины сторон треугольника,
    h – высота треугольника,
    γ – угол между сторонами a и b,
    r – радиус вписанной окружности, R – радиус описанной окружности,
    p = a + b + c  – полупериметр треугольника.
    2

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    S = a · b · sin α

  3. Формула площади параллелограмма по двум диагоналям и углу между ними
    Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.
    где S – Площадь параллелограмма,
    a, b – длины сторон параллелограмма,
    h – длина высоты параллелограмма,
    d1, d2 – длины диагоналей параллелограмма,
    α – угол между сторонами параллелограмма,
    γ – угол между диагоналями параллелограмма.

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

    S = a2 · sin α

  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.
    где S – Площадь ромба,
    a – длина стороны ромба,
    h – длина высоты ромба,
    α – угол между сторонами ромба,
    d1, d2 – длины диагоналей.

  1. Формула Герона для трапеции
    S = a + b√(p-a)(p-b)(p-a-c)(p-a-d)
    |a – b|
  2. Формула площади трапеции по длине основ и высоте
    Площадь трапеции равна произведению полусуммы ее оснований на высоту
    где S – площадь трапеции,
    a, b – длины основ трапеции,
    c, d – длины боковых сторон трапеции,
    p = a + b + c + d  – полупериметр трапеции.
    2

  1. Формула площади четырехугольника по длине диагоналей и углу между ними Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними: где S – площадь четырехугольника,
    d1, d2 – длины диагоналей четырехугольника,
    α – угол между диагоналями четырехугольника.
  2. Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)
    Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности

    S = p · r

  3. Формула площади четырехугольника по длине сторон и значению противоположных углов

    S = √(p – a)(p – b)(p – c)(p – d) – abcd cos2θ

    где S – площадь четырехугольника,

    a, b, c, d – длины сторон четырехугольника,

    p = a + b + c + d2  – полупериметр четырехугольника,

    θ = α + β2  – полусумма двух противоположных углов четырехугольника.

  4. Формула площади четырехугольника, вокруг которого можно описать окружность

    S = √(p – a)(p – b)(p – c)(p – d)

  1. Формула площади круга через радиус
    Площадь круга равна произведению квадрата радиуса на число пи.

    S = π r2

  2. Формула площади круга через диаметр
    Площадь круга равна четверти произведения квадрата диаметра на число пи. где S – Площадь круга,
    r – длина радиуса круга,
    d – длина диаметра круга.

© 2011-2021 Довжик Михаил
Копирование материалов запрещено.

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Если Вы хотите связаться со мной, имеете вопросы, предложения или хотите помочь развивать сайт OnlineMSchool пишите мне support@onlinemschool.com

Источник: https://ru.onlinemschool.com/math/formula/area/

Справка по площади. Виды площадей. Единицы измерения площади. Конвектор величин единиц измерения площади. Калькуляторы площадей

Обозначение общей площади
Площадь —численная характеристика двумерной (плоской или искривлённой) геометрической фигуры (неформально говоря, показывающая размер этой фигуры).

Общие сведения

В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.  Исторически вычисление площади называлось квадратурой.

Фигуры с одинаковой площадью называются равновеликими.

Общий метод вычисления площади геометрических фигур получен с помощью интегрального исчисления.

Единицы измерения площади:

  • квадратный миллиметр— Обозначение на сайте мм2.  Данная единица измерения широко применяется при инженерных расчетах, в современной справочной литературе, в обозначение параметров оборудования, технических устройств, при разработке проектной и рабочей документации. ;
  • квадратный сантиметр — Обозначение на сайте см2 . Данная единица измерения широко применяется при инженерных расчетах, в современной справочной литературе, в обозначение параметров оборудования, технических устройств, при разработке проектной и рабочей документации.;
  • квадратный метр —  единица измерения площади в СИ. Обозначение в России: м2; международное: m2. Данная единица измерения широко применяется при инженерных расчетах, в современной справочной литературе, в обозначение параметров оборудования, технических устройств, при разработке проектной и рабочей документации;
  • квадратный километр —  Обозначение в России: км2; международное: km2 .

Перевод единиц измерения площади (в табличном виде):

Переводимые единицы  площадиПеревод площади в единицы:
мм2см2м2км2
мм210.01
см21
м2100001
км21

Порядки единиц измерения площади:

Порядок единиц измеренияЕдиницы измерениямм2см2м2км210

100

1 000 

10 000

1 000 000

см2
м2
м2км2

Виды площадей, встречаемых при инженерных расчетах:

    • площадь сечения. Это изображение только фигуры, образованной рассечением тела плоскостью (плоскостями) без изображения частей за этой плоскостью (этими плоскостями). Широко используется в расчетах на прочность, устойчивость, жесткость и т.д элементов зданий, сооружений и различных сетей инженерного обеспечения (трубопроводы, технические устройства и т.д.);
    • площадь живого сечения.  Это площадь сечения потока, расположенную перпендикулярно направлению движения жидкости. Широко применяется при гидравлический и аэродинамических расчетах;
    • площадь поверхности оборудования, трубопроводов, технических устройств, элементов строительных конструкций. Широко используется в расчетах на прочность, устойчивость, жесткость и т.д элементов зданий, сооружений и различных сетей инженерного обеспечения (трубопроводы, технические устройства и т.д.). Так же используется в теплотехнических расчетах, расчете количества теплоизоляции, расчете количества лакокрасочных материалов;

Калькулятор расчета площади боковой поверхности трубы (цилиндра)

Для труб с параметрами согласно действующему сортаменту можно рассчитать площади в КАЛЬКУЛЯТОРЕ ТРУБ ОНЛАЙН, РАСЧЕТ РАЗМЕРОВ ТРУБ (МАССА И ВЕС ТРУБ, ОБЪЕМ ВНУТРЕННЕГО ПРОСТРАНСТВА, ПЛОЩАДЬ ПОВЕРХНОСТИ И Т.Д.).

Источник: https://gidrotgv.ru/spravka-po-ploshhadi-vidy-ploshhadej-edinicy-izmereniya-ploshhadi-konvektor-velichin-edinic-izmereniya-ploshhadi/

Как вычислить площадь: формулы расчета для разных фигур, знаки обозначения, единицы измерения

Обозначение общей площади

Знания о том, как измерить Землю, появились еще в древности и постепенно оформились в науку геометрию. С греческого языка это слово так и переводится — «землемерие».

Мерой протяжённости плоского участка Земли по длине и ширине является площадь. В математике она обычно обозначается латинской буквой S (от англ. «square» — «площадь», «квадрат») или греческой буквой σ (сигма).

S обозначает площадь фигуры на плоскости или площадь поверхности тела, а σ — площадь поперечного сечения провода в физике.

Это основные символы, хотя могут быть и другие, например, в сфере сопротивления материалов, А — площадь сечения профиля.

  • Формулы расчета
  • Треугольник
  • Четырёхугольник
  • Многоугольник
  • Круг
  • Единицы измерения

Формулы расчета

Зная площади простых фигур, можно находить параметры более сложных. Античными математиками были выведены формулы, по которым можно легко их вычислять. Такими фигурами являются треугольник, четырёхугольник, многоугольник, круг.

https://www.youtube.com/watch?v=7shvaE_gIUI

Чтобы найти площадь сложной плоской фигуры, её разбивают на множество простых фигур, таких как треугольники, трапеции или прямоугольники. Затем математическими методами выводят формулу для площади этой фигуры. Подобный метод используют не только в геометрии, но и в математическом анализе для вычисления площадей фигур, ограниченных кривыми.

: какой вектор называется разностью двух векторов?

Треугольник

Начнём с самой простой фигуры — треугольника. Они бывают прямоугольные, равнобедренные и равносторонние. Возьмём любой треугольник ABC со сторонами AB=a, BC=b и AC=c (∆ ABC). Чтобы найти его площадь, вспомним известные из школьного курса математики теоремы синусов и косинусов. Отпуская все выкладки, придём к следующим формулам:

  • S=√[p•(p-a)•(p-b)•(p-c)] — известная всем формула Герона, где p=(a+b+c)/2 — полупериметр треугольника;
  • S=a•h/2, где h — высота, опущенная на сторону a;
  • S=a•b•(sin γ)/2, где γ — угол между сторонами a и b;
  • S=a•b/2, если ∆ ABC — прямоугольный (здесь a и b — катеты);
  • S=b²•(sin (2•β))/2, если ∆ ABC — равнобедренный (здесь b — одно из «бёдер», β — угол между «бёдрами» треугольника);
  • S=a²•√¾, если ∆ ABC — равносторонний (здесь a — сторона треугольника).

: Как найти периметр треугольника.

Четырёхугольник

Пусть имеется четырёхугольник ABCD, у которого AB=a, BC=b, CD=c, AD=d. Чтобы найти площадь S произвольного 4-угольника, нужно разделить его диагональю на два треугольника, площади которых S1 и S2 в общем случае не равны.

Затем по формулам вычислить их и сложить, т. е. S=S1+S2. Однако, если 4-угольник принадлежит к определённому классу, то его площадь можно найти по заранее известным формулам:

  • S=(a+c)•h/2=e•h, если 4-угольник — трапеция (здесь a и c — основания, e — средняя линия трапеции, h — высота, опущенная на одно из оснований трапеции;
  • S=a•h=a•b•sin φ=d1•d2•(sin φ)/2, если ABCD — параллелограмм (здесь φ — угол между сторонами a и b, h — высота, опущенная на сторону a, d1 и d2 — диагонали);
  • S=a•b=d²/2, если ABCD — прямоугольник (d — диагональ);
  • S=a²•sin φ=P²•(sin φ)/16=d1•d2/2, если ABCD — ромб (a — сторона ромба, φ — один из его углов, P — периметр);
  • S=a²=P²/16=d²/2, если ABCD — квадрат.

Многоугольник

Чтобы найти площадь n-угольника, математики разбивают его на простейшие равные фигуры —треугольники, находят площадь каждого из них и затем складывают. Но если многоугольник относится к классу правильных, то используют формулу:

S=a•n•h/2=a²•n/[4•tg (180°/n)]=P²/[4•n•tg (180°/n)], где n — количество вершин (или сторон) многоугольника, a — сторона n-угольника, P — его периметр, h — апофема, т. е. отрезок, проведённый из центра многоугольника к одной из его сторон под углом 90°.

Круг

Круг — это совершенный многоугольник, имеющий бесконечное число сторон.

Нам необходимо вычислить предел выражения справа в формуле площади многоугольника при числе сторон n, стремящемуся к бесконечности.

В этом случае периметр многоугольника превратится в длину окружности радиуса R, которая будет границей нашего круга, и станет равен P=2•π•R. Подставим это выражение в указанную выше формулу. Мы получим:

S=(π²•R²•cos (180°/n))/(n•sin (180°/n)).

Найдём предел этого выражения при n→∞.

Чтобы это сделать, учтём, что lim (cos (180°/n)) при n→∞ равен cos 0°=1 (lim — знак предела), а lim [1/(n•sin (180°/n))]= lim [1/(n•sin (π/n))] при n→∞ равен 1/π (мы перевели градусную меру в радианную, используя соотношение π рад=180°, и применили первый замечательный предел lim (sin x)/x=1 при x→∞). Подставив в последнее выражение для S полученные значения, придём к известной формуле:

S=π²•R²•1•(1/π)=π•R².

Единицы измерения

Применяются системные и внесистемные единицы измерения. Системные единицы относятся к СИ (Система Интернациональная). Это квадратный метр (кв. метр, м²) и единицы, производные от него: мм², см², км².

В квадратных миллиметрах (мм²), например, измеряют площадь сечения проводов в электротехнике, в квадратных сантиметрах (см²) — сечения балки в строительной механике, в квадратных метрах (м²) — квартиры или дома, в квадратных километрах (км²) — территории в географии.

Однако иногда используются и внесистемные единицы измерения, такие, как: сотка, ар (а), гектар (га) и акр (ас). Приведём следующие соотношения:

  • 1 сотка=1 а=100 м²=0,01 га;
  • 1 га=100 а=100 соток=10000 м²=0,01 км²=2,471 ас;
  • 1 ас= 4046.856 м²=40,47 а=40,47 соток=0,405 га.

Источник: https://obrazovanie.guru/nauka/matematika/kak-vychislit-i-oboznachit-ploshhad.html

Как обозначается площадь: какой буквой или знаком пишется параметр площади в математике

Обозначение общей площади

В жизни каждого человека по достижении 7-летнего возраста появляется необходимость обучаться в средней общеобразовательной школе. В этом заведении ученик получает базовые знания и навыки. В рамках учебной программы по математике школьники узнают, как обозначается площадь. Необходимо рассмотреть, какой буквой и единицей измерения необходимо это делать.

Варианты обозначения

Понятие используется не только в математике. Оно актуально и для физики.

В связи с разносторонностью применения возникает вопрос, какой буквой обозначается площадь.

В зависимости от дисциплины, в рамках которой применяется изучаемое понятие, становится очевидным ответ, какой буквой алфавита обозначают данную величину.

В таких науках, как физика и математика, используется знак латинского алфавита S. Данная буква имеет произношение {эс}.

Обратите внимание! Знаком S обозначают площадь таких фигур, как квадрат, треугольник, ромб, прямоугольник, круг.

Среди вопросов, занимающих умы студентов высших учебных заведений, присутствует тема: как обозначить данную величину нескольких геометрических объектов. В данном случае в письменном варианте применяются нижние индексы. Среди значений, используемых в индексной системе обозначений, присутствуют числа.

Примером выступает обозначение S1, S2, S3. Также считается допустимым применение сокращенных наименований геометрических объектов, по отношению к которым производится числовое измерение. Так, при изучении треугольников для сокращенного названия используются наименования вершин, обозначенные латинскими буквами. В качестве примера могут быть SAOB, SCLE, SOME.

Интересно! Что значит вертикально и как выглядит вертикальная линия

Актуальным для учащихся является вопрос, как пишется в физике площадь. Следует отметить, что данным понятием характеризуется поперечное сечение. Считается допустимым использовать для уточненного обозначения нижний индекс. Сохраняется возможность написания простых чисел в индексной системе.

Вопрос, как пишется в строительной механике и сопромате данная величина, заставляет задуматься студентов. В данных дисциплинах под буквой латинского алфавита S подразумевается обозначение статического момента. Так выражается площадь по отношению к рассматриваемой оси. В качестве символа, обозначающего данный показатель, используется буква латинского алфавита A или F.

Подведем итоги

Пространственное представление об изучаемом геометрическом объекте становится возможным благодаря площади. Обозначение данного показателя разнится в зависимости от выбранной дисциплины.

Источник: https://tvercult.ru/nauka/izuchaem-simvolyi-kak-oboznachaetsya-v-matematike-ploshhad

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.